
R DForm Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing the burden, to Department of Defense, Washington Hleadquarters Services, Directorate for Information Operations and Raport• (07454-0188).
1215 Jefferson Davis Highway, Suits 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any

penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM- YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

01-02-2007 MAJOR REPORT 1
4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

APPLY MODEL CHECKING TO SECURITY ANALYSIS IN TRUST
MANAGEMENT

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

CAPT MARK G. REITH
JIANWEI NIU
WILLIAM H. WINSBOROUGH So. TASK NUMBER

S5. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

UNIVERSITY OF TEXAS AT SAN ANTONIO REPORT NUMBER

C107-0030

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

THE DEPARTMENT OF THE AIR FORCE
AFIT/ENEL, BLDG 16
2275 D STREET 11. SPONSOR/MONITOR'S REPORT

WPAFB OH 45433 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF
PAGES

19b. TELEPHONE NUMBER (Include area code)10

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Apply Model Checking to Security Analysis in Trust Management

Mark Reith, Jianwei Niu, William H. Winsborough
University of Texas at San Antonio

One UTSA Circle
San Antonio, Texas, USA

78249
{ niu, mreith} @ cs.utsa.edu, wwinsborough@acm.org

Abstract to address dynamic changes in security requirements over
the course of a software system's lifecycle. The software

Trust management is a form of access control that uses components that comprise critical systems often endure ex-
delegation to achieve scalability beyond a single organiza- tensive testing if not more rigorous measures such as formal
tion or federation. However, delegation can be difficult to methods. However, poor policy design is an equally grave
control. A resource owner that delegates some authority is hazard. It is critical to verify that the policy as stated (or at
naturally concerned not only about who has access today, least the parts of it under one's control) meets ones intended
but also who will have access after others make changes policy objectives.
to the global policy state. They need tools to help answer Trust management (TM) is a type of security policy con-
such questions. This problem has been studied in the case cerned with reasoning about delegation of access control
of a trust management language called RT where, for sim- in software systems [1, 9]. Delegation is the key aspect
pIe questions concerning specific individuals, polynomial of TM as it addresses the problem of scalability in tradi-
time algorithms are known. However, more useful ques- tional access control systems. In a traditional system, ac-
tions, like "Could anyone who is not an employee ever get cess control is maintained by a centralized authority. In a
access?" are in general intractable. This paper concerns TM system access rights are derived as a consequence of
our efforts to build practical tools that answer such ques- a global policy state that consists of delegation statements
tions in many cases nevertheless by using a lightweight ap- authored by principals in the system, some of whom own
proach that leverages a mature model checking tool called resources. The global policy state changes whenever a prin-
SMV Model checking is an automated technique that checks cipal in the system adds or removes one of his policy state-
if desired properties hold in the model. Our experience, re- ments. Whereas this approach provides a high degree of
ported here, suggests that in our problem domain, such a scalability by obviating the need for centralized authority,
tool may often be able to identify delegations that are unsafe it also introduces management problems of its own, since
with respect to security questions like the one mentioned portions of the policy state are authored by untrusted enti-
above. We explain our translation from a RT policy and ties. Policy authors need analysis tools that can determine
containment query to an SMV model and specification as whether critical policy requirements can be compromised
well as demonstrate the feasibility of our approach with a by untrusted and semi-trusted principals in the system.
case study. Whereas many formal methods may be too costly for

this purpose, we seek lightweight approaches [7]. Such ap-
proaches work with existing notations and are highly au-

1. Introduction tomated, often with established tool support. In particular,
here we explore the use of model checking.

Analyzing security policies is a critical step towards en- Several recent papers examine the applicability of model
gineering secure software systems. Secure software sys- checking as a means to verify security properties in poli-
tems are often designed to separate security policy from cies of centralized systems [3, 6, 10]. Our study is based
security mechanism [1] in order to provide the flexibility on the security analysis problem introduced and formalized

IThe views expressed in this article are those of the author and do not in [9], which considers whether queried properties hold in
reflect the official policy or position of the United States Air Force, De- all states that are reachable through changes made by un-
partment of Defense, or the U.S. Government. trusted and semi-trusted principals. It is based on the role-

based trust management language, RT [8]. We present a Type Syntax Description
translation of RT policy to an SMV model and report on the Type I A.r - D Simple Member
feasibility of verifying security properties on this model. To Type H Ar - B.r1 Simple Inclusion
the best of our knowledge, this is the first examination of Type HI A.r -- B.rl.r 2 Linking Inclusion
model checking in verification of TM policies. Type IV A.r -- B.rl n C.r2 Intersection Inclusion

The structure of this paper is as follows. Section 2 de-
scribes the RT language and the expensive complexity of Figure 1. RT Statements
role containment analysis. Section 3 provides a brief back-
ground of model checking. Section 4 outlines the transla-
tion of an RT policy to an SMV model and provides justi-
fication for reduction techniques used to scope the size of a role. Set intersection and union are also both available for
the resulting model. Section 5 illustrates this technique in a role definition.
case study. Section 6 comments on related and future work, The RT language consists of two primary objects called
and we conclude in Section 7. roles and principals. A principal is an entity such as a per-

son or software agent. Each role can be described as a set
2. The RT Policy Language of principals and is of the form "principal.role.name". One

interpretation of this role is that the principal considers the
The role-based trust management policy language RT members (also principals) of this role to have an attributed

was designed to support highly decentralized attribute- denoted by the role name. For example, Alice.friend may
based access control [8]. It enables resource providers to be a role that contains the principals whom Alice considers
make authorization decisions about resource requesters of friends.
whom they have no prior knowledge. This is achieved by The basic RT language consists of four types of state-
delegating authority for characterizing principals in the sys- ments as shown by Figure 1 [9]. Type I statements directly
tem to other entities that are in a better position to provide introduce individual principals to roles. A given principal
the characterization. For instance, to grant discounted ser- inly indivinual ifcipas trol e d A aiTyprIvice to students, a resource provider might delegate to uni- can only show up in a role if it was introduced by a Type I
versities the authority to identify students and delegate to statement. For example, Alice friend Bob identifies Bobaccreditinge b ds the authority to identify stud ani lerities, as a friend of Alice. Type H statements express a form ofaccrediting boards the authority to identify universities. d l g t o h t d s rb s t ei p i ai n t a f p i c p l

A significant problem that policy authors face in this delegation that describes the implication that if principalscontxt s tat o deermnin theextnt f thir xpoure are in one role, then they are in another role as well. For
context is that of determining the extent of their exposure example, the statement Alice.friend +- Bob friend describes
through delegation to untrusted or semi-trusted principals. the s tat emen wh ic e frind is abfriend ofscrben
The security analysis problem [9] in this context consists of the situation in which if a principal is a friend of Bob, thendetermining whether changes made by principals that are they are also a friend of Alice. Type HII statements provide

deteminng hethr cangs mae b prncipls hatare a mechanism to delegate to all members of a role. For ex-not fully trusted could cause certain policy objectives to ame, to statgement al members ofaroe. For sa-
become violated. One example of the problem would ask ample, the statement Alice friend o- Bob.friend friend says
whether anyone outside the organization could, because of does not imply that Alice's friends include Bob's friends.
changes made by principals outside the inner circle, gain Finally, Type IV statements introduce intersection such that
access to the organization's sensitive data. In this section, Final mustate introle intersetincluded.we smmaize T ad th seurit anlysi ofit.a principal must be in two roles in order to be included.
we summarize RT and the security analysis of it. For example, Alice.friend - Bob friend n Carl.friend says

2.1. Brief Review of RT Syntax & Seman- that only those principals who are both Bob's friends and

tics Carl's friends are introduced into the set of Alice's friends.
Note that disjunction is provided through multiple state-

In RT, all principals are able to define their own roles ments defining the same role.

and to assign other principals to them. A role owner can do In this paper we use certain terms to describe specific
this by issuing authenticatable, role-defining statements of a pieces of the policy. The left hand side of the arrow is
few different types. To her own roles, she can add a specific called the defined role. In regards to Type III statements, the
principal or she can add the members of another role. In the base-linked role is the role that contains the principals upon
latter case, she is delegating authority to the owner of the which the linking role is applied. Closely related are the
other role. Delegating authority to another owner can occur sub-linked rmles which are the roles produced by the linking
in two ways. First she can identify a specific principal as a role. Thus in the case of A.r - B.rl.r2, the role B.rl is
delegate. Secondly, she can identify a collection of princi- the base-linked role and every role such as A.r 2 , B.r 2 and
pals as delegates such that these principals are grouped by so on are the sub-linked roles.

2.2. RT Policy Analysis tremes. The purpose of this work is to examine these states
for role containment using model checking.

Policy analysis examines whether or not properties such

as availability, safety, liveness and mutual exclusion hold
[9]. Availability asks if a principal always has access to a re- 3. Model Checking
source, whereas safety is concerned with testing if the mem-
bership of role is bounded by a set of principals. Liveness Model checking [2] is an automated verification tech-
asks if it is possible to reach a situation where no principals nique that builds a finite model of a system and exhaustively
have access to a resource. Mutual exclusion is concerned explores the state space of the model to determine if desired
with testing for separation of duty such that the member- properties hold in the model. In the case that a property is

ship of two roles do not intersect, false, a counterexample will be produced to show an error

These properties are tested with respect to restrictions, trace, which can be used to fix the model or the property

Restrictions provide a tool to help reason about trust and specification.

delegation by acting as a control on how the policy may SMV [II] is a BDD-based model checking tool. Mod-

change over time. Given an initial policy with no restric- els are represented using variables and their assignments in

tions, each statement may be removed and new statements each step, and properties are specified as temporal logic [12]

may be added. If we wish to limit how roles are defined, formula. SMV provides built-in finite data types, such as

we may add growth and shrink restrictions. Growth re- boolean, enumerated type, integer range, arrays, and bit

strictions consist of a list of roles that are not allowed to vectors. In SMV, state variables are assigned initial val-

be defined by any statement other than those present in the ues and next values in every SMV step: a variable x's value

initial policy. Shrink restrictions consist of a list of roles in the next state, next(x), is either the value of an expres-
whose defining statements may not be removed. For ex- sion in the current state or the value of an expression in the

ample, given the statement Alice. friend +- Bob.friend next state. Expression operators -,, &, 1, and -- represent

in the initial policy, and Alice.friend is shrink restricted, logical operators "not", "and", "or", and "implies", respec-

then we can guarantee that Bob's friends will always be Al- tively. Comments follow the symbol "--".

ice's friends. If this same role were also growth restricted The state of the system is determined by the values of all

and there were no other statements defining it in the initial state variables. The transition relation is defined by the set

policy, then we may say that Alice cannot have any friends of next assignments which execute concurrently in a step to

other than those of Bob's friends. Restrictions could repre- determine the next state of the model. SMV allows nonde-

sent either system-enforced rules, or identify the principals terministic assignments, i.e., the value of a variable is cho-

of such roles as entities that can be trusted to make safe sen arbitrarily from the set of possible values. SMV also

policy changes. By identifying the smallest set of restric- supports derived statements (macros), which are replaced

tions, one can also identify the set of principals that must be by their definitions, so they do not increase a system's state

trusted in order for the property to hold. space. In this paper, macros are intensively used in SMV

The aforementioned properties can be verified in poly- models resulting from our translation.

nomial time, but there is one property that is much more The properties we want to check are called specifica-

expensive to verify and the focus of this paper. Role con- tions, which are expressed in temporal logic. Temporal

tainment asks if one role is a subset of another role. We logic is a language for expressing properties related to a se-
want to know if those principals in one role (possibly with quence of states in terms of temporal logic operators and

access to a resource) are also always in another role (possi- logic connectives (e.g., A and v). Temporal operators X, F,

bly with access to another resource). Li et. al. [9] proved and G represent next state, some future state, and all future

an upper bound of co-NEXP on the time required to an- states, respectively. For example, Gp means that property p

swer this query, whereas the other properties can be veri- is always true in all possible states.

fled in polynomial time. The difference in complexity in-
volves the monotonic nature of the language. Once a prin- 4. Modeling RT Policies
cipal is included in a role from one source, it cannot be re-
moved. There are no negative statements in the sense that no RT policies are allowed to change over time as state-
statement has the effect of removing principals from roles. ments are added or removed according to growth and shrink
This allows properties such as availability, safety, liveness restrictions. This dynamic behavior can be described as
and mutual exclusion to be evaluated by simply producing transitions from one policy state to another, where each state
the "maximal reachable state" or "minimal reachable state" is defined by its policy statements. We are interested in ex-
[9]. However, containment properties cannot be determined amining security properties at each state in order to prove
solely by maximal or minimal reachable states. Instead, we that these properties hold throughout the changes. Model
must examine all of the states that lie between these two ex- checking is appropriate for our goal as it can quickly find

counterexamples when properties fail to hold. The follow- Initial Policy MRPS

ing sections describe the pre-processing and translation nec- A.r +- B.r Ar - B.r E.s - F
essary to verify RT policies using a model checking ap- A.r <- C.r.s A.r -- C.r.s E.s G- G
proach. A.r B.r n C.r A.r ,-B.r n C.r E.s *-H

A.r E F.s- E
4.1. Maximum Relevant Policy Set A.r F F.s F

Given an initial policy and a set of restrictions, it is diffi- A.r G F.s - G

cult to predict what additional statements containing roles A.r H F.s , H

and principals may be added to the policy in the future. B.r E G.s - E

Whereas an RT policy is not constrained by the number of B.r F G.s F

statements, roles or principals it can contain, model check- B.r G- G G.s G- G

ing requires a finite state space. This is achieved by defin- B.r -- H G.s H

ing a maximum relevant policy set (MRPS). The MRPS is C.r E E H.s E

the maximum set of policy statements that may contribute C.r - F H.s - F

to the outcome of a particular query given an initial pol- C.r - G H.s G C

icy. Thus the MRPS is built with respect to a query and C.r * H H.s -- H

contains all initial policy statements as well as additional E.s E F

Type I statements. The Type I statements are necessary in Figure 2. Initial Policy (no restrictions) &
order to introduce additional principals into the roles. In- Fure 2. I Plc (no res
tuitively, any statement added to a policy can be re-written Query: A.r - B.r vs. MRPS
as a (possibly empty) set of Type I statements, as demon-
strated in [9]. These principals introduced by the Type I
statements are representative of all possible principals and compared to the original policy, growth restrictions may re-
a certain number of them are necessary in order to verify duce the size of the MRPS because we will not be able to
role containment. As previously shown [9], if the contain- add new principals to certain roles. In this way, growth re-
ment property does not hold, then the counterexample state strictions are accounted for in the model. Statements defin-
will have at most M = 21SI principals over O(M 2 N) state- ing growth restricted roles (other than those in the initial
ments, where S is the set of significant roles and N is the policy) are simply not included into the MRPS. Shrink re-
number of initial policy statements. A significant role is strictions are accounted for in next state relations in Section
defined as one of the following: 4.2.3.

1. The superset role in a role containment query. 4.2. RT to SMV Translation Rules

2. The base-linked role of a Type III statement. The translation from an RT policy, restrictions, and query

3. Both intersected roles on the RHS of a Type IV state- to an SMV model is comprised of five steps described in the

ment. following subsections.

To construct the MRPS, we first place all the principals 4.2.1. Build MRPS & SMV Model Header

on the RHS of Type I statements from the initial policy into Preprocessing the initial policy into the MRPS is the first
set Princ. Then we calculate how many additional princi- step of this process as it provides a finite number of state-
pals are needed using the upper bound described by M. We ments and principals to be translated into the SMV model.
place this number of additional principals into Princ. Next We detail the MRPS in comments at the head of the file
we build the set of roles Roles to include all of the roles for easy indexing reference. This reference provide readers
from the initial policy and query as well as those roles con- with a quick understanding of what each bit position repre-
structed from the cross product of principals Princ and link sents. Information in the header should include the original
role names. Finally, we construct new Type I statements policy, restrictions, the query as well as a list of all roles and
from the cross product of Roles and Princ. These statements all principals considered in this model.
along with all of the initial policy statements constitute the
MRPS. In addition it is useful to identify the Minimum Rel- 4.2.2. Build SMV Data Structures
evant Policy Set as the set of non-removable initial policy Each model contains one bit vector representing all of the
statements. It identifies which statements are permanently statements in the MRPS and additional role bit vectors rep-
included in our model. resenting each role. The size of the statement bit vector is

Consider the example in Figure 2. Although the number the size of the MRPS and the size of each role bit vector
of Type I statements that needed to be added seems large is equivalent to the number of principals considered. For

-- bit for each statement init(statement[O]) 0;
statement : array 0..33 of boolean; init(statement[l]) 0;

statement[2] 1;
-- bit for each principal per role ...
Ar array 0. .3 of boolean; next(statement[0]) {0,1};
Br array 0. .3 of boolean; next(statement[l]) :{0,};
Cr array 0 .3 of boolean; ..
Es array 0 .3 of boolean;
Fs array 0 . 3 of boolean; Figure 4. Example SMV Initialization & Next
Gs array 0. .3 of boolean; State Relations
Hs array 0 .3 of boolean;

Figure 3. Example SMV Data Structures from ables. The translation is summarized in Figure 5. The fol-
Fig. 2 MRPS lowing describes the translation of each type of statement.

We modeling a role with multiple statements by taking the
logical or of the definitions below.

example, in Figure 2, the number of principals considered Type I policy statements are expressed in the model as

is four and thus every role will have four bits as in Figure direct associations between roles and statements. Thus the
3. We keep the naming convention from the RT policy and RT statement A.r - B that is indexed as statement 0 in

reuse the original role, linking role and principal names with our MRPS is expressed as Ar[1] := statement[O]; in SMV

the exception that we remove the dot (.) since in SMV this where bit position 1 in all roles corresponds to B. If state-

operator has a specific and unrelated function. ment 0 exists in a policy state, then B is a member of A.r.
Type II policy statements are expressed as a relation be-

4.2.3. Initialization & Next State Relations of Statement tween two roles. Thus the statement A.r -- B.r that
Bit Vector is indexed as statement 1 in our MRPS is expressed as

Initialization of state variables reflects the initial policy Ar[i] := statement[l] & Br[i]; for i = 0... n princi-
state. As such, each bit in the statement bit vector is ini- pals. In many cases, we can use the shorthand notation

tialized to true if its corresponding policy statement can Ar := statement[l] & Br which is equivalent.

be found in the initial policy. Otherwise the bit is set to Type III policy statements are more complex since

false indicating its corresponding statement is not included they require testing each of the sub-linked roles.
Given the statement A.r ,-- B.r.s that is indexed

in the initial policy. A special case exists when a statement an statement 2n r +- weres tt is i]d:e

is shrink-restricted (the defined role is non-removable) and statement[2] & ((Br[0] & As[i]) 1.. I (Br[j] & ja h role[i]));
included in the initial policy. In these cases, the bit is de- [& . B[n as and j .fine asperanet inicaingtha th polcy tatmen it for i = 0. .. n principals and j sub-roles.
fined as permanent indicating that the policy statement it Finally, Type IV policy statements are expressed as a re-
indexes cannot be removed from any policy state. Perma- lation between three roles. The statement A.r ,- B.r n C.r
nent bits do not contribute to the state space. Transitions that is indexed as statement 3 in our MRPS is expressed as
from one state to another are accomplished by leaving non- Ar[i] := statement[3] & Br[i] & Cr[i]; for i = 0... n
permanent statement bits to remain unbound. By unbound, principals. Again, we may use the shorthand notation
we mean that the bit can be nondeterministically assigned Ar := statement[3] & Br & Cr; where applicable.
either true or false, allowing the model checker to find a
state of bits such that the property does not hold. An ex- 4.2.5. Build Specification
ample of initialization and next state relations is Figure 4. In model checking, the specification is the property we wish
While this strategy is sufficient to look for counterexamples, to test. The security analysis of RT may wish to test such
certain optimizations can be used to reduce the state space properties as availability, safety, role containment and mu-
depending on the structure of the policy. We discuss these tual exclusion. Our approach allows each of these properties
in Section 4.6. to be tested and provides counterexamples if the property

4.2.4. Build Role Derived Statements does not hold. Consider the example in Figure 6 where A.r
and B.r are two roles and the MRPS considers principals C,

Roles are defined in terms of policy statements and other D and F.
roles. When modeling this relationship, we use derived Note that the linear temporal logic (LTL) operator G is
variables since the state of the policy is defined in terms used to signify that all states are required to hold this prop-
of only policy statements, not roles. A derived variable in erty. Existential properties can also be tested using the nega-
SMV is a function of state variables and other derived vari- tion of G or through the LTL operator F.

Type RT MRPS SMV
Index

I A.r - B 0 Ar[1] statement[O];
II A.r -- B.r 1 Ar:= statement[l] & Br;
III A.r -- B.r.s 2 Ar = statement[2] & ((Br[0] & As) I

(Br[1] & Bs) I ... I (Br[j] & jth'roles));
IV A.r -- B.r n C.r 3 Ar = statement[3] & (Br & Cr);

Figure 5. RT Statement to SMV Statement

Property RT Query SMV Specification Notes
Availability A.r -_ {C, D} Always assert G (Ar[O] & Ar[1]) C and D in A.r
Safety {C, D} ; A.r Always assert G (- Ar[2]) E not in A.r
Containment A.r 7 B.r Always assert G (Ar I Br = Ar) Nothing new in B.r
Mutual Exclusion A.r ® B.r Always assert G (Ar & Br = 0) No intersection

Figure 6. RT Queries to SMV Specifications

4.3. State Space 4.4. Role Dependency Graph

A role dependency graph (RDG) is a useful tool for
The state of the policy is defined by the combination of visually depicting and analyzing role-to-role and role-to-

policy statements from the MRPS. Intuitively, the transition principal relationships. The RDG also provides a means of
from one policy state to another is defined as the addition or detecting circular dependencies. It is a directed graph where
removal of policy statements. This is achieved by allowing each node represents a role, a linked role, the conjunction
the model checker to freely assign flip bits in the statement of two roles, or a principal. Each edge represents a specific
bit vector. While this statement bit vector encodes the state policy statement and is labeled by its index in the MRPS.
of the policy, it alone is not sufficient to test the containment An edge is understood to mean the source node is depen-
query since both role memberships must be computed based dent on the destination node, and its label is the condition
on which statements are included in a given state. Comput- of the edge's existence. Nodes representing roles may have
ing role membership can be performed in polynomial time many edges, each representing a different definition of that
(that is O(p 3), where p is the number of policy statements) role.
[9] as a separate function, however this may be expensive Type I statements are always illustrated as an edge be-
considering the number of states that this function needs to tween a role node and a principal node. Principal nodes
be applied. A more efficient approach is to encode the roles are always leaves in the RDG because they cannot contain
as derived variables (again bit vectors) in the model such anything. Type U statements are represented by an edge be-
that as the state of the policy changes, the membership of all tween two role nodes.
the roles are updated. The derived variables represent role Type III and IV statements are expressed with unique
membership where each element position represent whether structures. Type III statements use an edge representing a
or not a principal is included in that role. The membership policy statement from role node to a linked role node, but
of the roles is then used to test for role containment. Al- then also use a dashed edge from the linked role node to
though these derived variables may seemingly increase the other role nodes representing sub-linked roles. The purpose
state space, they in fact have no effect on it because they of the dashed edge is to visually identify the condition that a
are not left unbound for the model checker to manipulate. It principal is in the base-linked role. These edges are labeled
should be noted that it is possible to create an MRPS with with the principal's name. Figure 7 illustrates this structure.
a state space so large that role containment cannot be veri- Thte Incipal's na e Fige ratesetis struct
fied in any reasonable amount of time. In model checking Type IV statements use an edge representing a policyterms, this is called the state explosion problem. Thus in statement from a role node to the conjunction of two roles,

but then uses an intermediate edge to show the relationship
cases where the role containment property holds, it is pos- between the conjunctive node and the roles from which it is
sible that the specification cannot be verified in an amount b ete Thesojuctvenoe and t s fr ichmitei
of time that is useful to the policy author. However, the composed. These edges are labeled as it for intermediate,
redeeming feature of a model checking approach is that if do not represent policy statements and always exist. Figure
the property does not hold, then it may be found in a short 8 trate thisnstructure.
amount of time. While the role dependency graph can be used to deter-

FA.r A-r AB

0

Dx~sB.r Bsp

~A 13 \C

(A.2s D~C.s
Figure 9. Circular Dependency with Type 11

Figure 7. Type Ill: A.r B.r.s Statements

The two approaches used are well-formed syntax checks
and graph cycle detection. The first approach detects cycles
using syntax check as each policy statement is processed.

B & C r For example, if a role is defined by itself, then we can safely
remove this statement since it doesn't contribute anything to

it A the query. It is easy to perform, however it only catches self-
referencing cycles. The second and more general approach

E.r C~r detects cycles across any number of statements using tradi-
tional depth first search. In these cases, it is not sufficient to
simply remove a statement. In these cases we must perform

Figure 8. Type IV: A.r ý B.r n C.r dependency unrolling.

4.5.2. Unrolling Circular Dependencies
mine membership of roles, it can also provide some insight
into the role containment query. For example, if a path of te rela tions on rolescaneeently repre-
non-removable edges exists from a superset to a subset, then sented using conditions of policy statements. Policy state-
we can guarantee that the containment relationship is al- to aremneither modersadd or reoe iorder
ways true. This can be described as a "structural" relation- compish to un derstani le us

ship Hoeve, cotaimen canals ocur trouh oher consider how to unroll the previous example involving A.r
ship. However, containment can also occur through otherB.r. The left graph of Figure 9 illustrates how two
means that we describe as an "ad hoc" relationship. A good and 11 statements might form a circular dependency. The
example of this is the situation where two roles are tested for right grpeora thecu nrolleden.
containment, but they exist in separate, unconnected graphs. right graph in the figure demonstrates the unrolled version.These ad hoc relationships are often the real challenge of Edges represent conditions upon which the dependency re-
anseradghcontainment queries, lies. Thus the role B.r will include expi if and only if state-
answering cments 1 and 2 are included in the policy state.

4.5. Circular Dependencies Circular dependencies involving Type III statements can
occur frequently. Two cases involving Type III statements

The role dependency graph is necessary to detect circular may cause a circular dependency. The first occurs in an ex-
dependencies in an RT policy. The RT language places no plicitly recursive statement such as when the base-linked
restrictions on self referencing statements such as A. r +- A. r role is any parent to the linked role in the RDG. These
or circular referencing such as A.r - B.r, B.r , A.r. In the cases require extensive unrolling and for brevity are not
latter case, this is interpreted as A.r is equivalent to B.r if shown here. The second occurs when any of the sub-linked
and only if both statements are non-removable. All circular roles are any parent to the linked role. Here the circular
references must be removed before translation to a model dependency can be removed using the unrolling approach
since SMV cannot handle circular definitions, described above, as illustrated by Figure 10. In this case,

the conditionals noted on the edges include not only policy
4.5.1. Detecting Circular Dependencies statement indices, but also actual principals that must exist
Since there are situations where circular dependencies cause in the base-linked role in order for the dependency to exist.
significant problems, a means to detect them is necessary. In the example demonstrated by Figure 10, B.r will include

Asr Ar
As

0

0 0Dw

2igure 010. Za wihTyeII
02

3

exp2 As & Cr As &C~r

-xp2 CIS~ xy P2 C~r.r

t 2 t

Cr As Csr

C~r Cr
1.2

exp3 exp2 1 expi

Figure 11. Circular Dependency with Type IV
Figure 10. Circular Dependency with Type III Statements
Statements

policy) if statement 3 does not exist. The same idea can be
expi if and only if statements 0 and 3 are included in the used if a role is defined by multiple policy statements.
policy state, as well as C.r contains the principal A.

Finally, Type IV statements that introduce circular de- -Index__Statement_

pendencies when one or both of the intersected roles is a Index Statement
parent in the RDG. Again unrolling is found effective when 0 A.r -- B.r
coupled with the realization that A.r +- A.r n B.r does not I B.r - C.r

contribute anything unique to A.r. In fact, this is a base case 2 C.r - D.r

such that if the circular dependency exists in that form then 3 D.r E

it can be safely removed. Figure I11 illustrates an exampleFiue1.EapeoChnRdctn
of circular dependency involving Type IV statements. Here Figure 12. Example of Chain Reduction
the only thing contributing to A.r through B.r is exp2 and
not A.r & C~r.

For the sake of completion, note that Type I statements if (next (statement [3])
cannot contribute to circular dependency. Also, statements next (statement [2]) = {0, 1};
such as A.r +- A.r can safely be removed since it doesn't else
contribute anything new into A.r. next(statement[2]) = 0;

4.6. Chain Reduction Figure 13. Example of SMV Chain Reduction

Certain optimizations can be incorporated to further re-
duce the state space by recognizing logically equivalent Type III and Type IV statements may also be candidates
states with respect to a particular role. Consider the exam- for this reduction. For example, given the Type III statement
pie using Type II statements where we want to determine A.r +- B.r.s, if the base-linked role B.r is empty, than
the membership of A.r in Figure 12. In this case, there are the linked role B.r.s contributes nothing to A.r. Type IV
a total of 4 statements and 24 = 16 states possible. If state- statements are often easy to reduce because if either of the
ment 3 is removed, then not only is the membership of D.r intersected roles is empty, then nothing is contributed to the
is empty, but also the membership of A. r B.r, and C.r. Thus defined role and thus we can force the other intersecting role
under the condition that statement 3 does not exist, we do to also be empty. A series of these conditions may occur
not need to check the eight states representing combinations leading to a chain reduction. A chain reduction may imply
of statements 0, 1 and 2. This is handled by conditional many logically equivalent states are able to be checked for
statements, one example of which is Figure 13. The effec- a property with only a single test. This may yield a smaller
tive result is that we now test only a single state (the empty state space.

4.7. Disconnected Graphs Initial Policy
HQ.marketing - HR.managers

Disconnected graphs are non-connected RDGs. It is pos- HQ.marketing - HQ.staff
sible that there are multiple sub-graphs in a system that, HQ.marketing *--HR.sales

while not connected by any statements, are queried for con- HQ.marketing - HQ.marketingDelg n
tainment. Our current translation approach works correctly HR.employee
because we do not depend on if the queried roles are con- HQ.ops -- HR.managers
nected or not. However, analyzing the RDG may provide HQ.ops -- HR.manufacturing
insight to some optimization. For example, removing sub- HQ.marketingDelg *.- HR.managers.access
graphs that do not contain the roles specified in the query HR.employee -- HR.managers
will further reduce the state space. HR.employee -- HR.sales

HR.employee -- HR.manufacturing
HR.employee 4 HR.researchDev

5. A Trust Management Case Study HQ.staff -- HR.managers
HQ.staff HQ.specialPanel n

Consider the access control policy of a fictitious com- HR.researchDev
pany Widget Inc. Widget has a marketing strategy and an HR.manager - Alice
operations plan that it must protect from competitors, while HR.researchDev +- Bob
at the same accessible to those employees with a need to Growth & Shrink Restricted
know. Some properties of interest are: HQ.marketing

HQ.ops
1. Is the marketing strategy and operations plan HR.employee

only available to employees? HR.employee :1 HQ.marketingDelg
HQ.marketing, HR.employee :3 HQ.ops HQ.staff

2. Does everyone who has access to the operations plan Figure 14. Consider the queries: HR.employeeSHQ.marketing, HR.employee D_ HrQ.ops,
also have access to the marketing plan? HQ.marketing HQ.marketing -HQ.ops

;_ HQ.ops HQ.marketing ;_ HQ.ops

In this case, the significant roles are HR.marketingDelg,
HR.employee, HR.managers, HQ.specialPanel, and 6. Related & Future Work
HR.researchDev from the initial policy and HQ.marketing
from the second query. This leads to a maximum of 64 Security requirements of business systems express the
new principals added to the model, 77 unique roles and a goals for protecting the confidentiality, integrity and avail-
total of 4765 policy statements, 13 of which are permanent ability of assets. There has been substantial work on de-
due to shrink restrictions. Note that not all of the roles veloping models and policy languages for addressing these
are growable. Although 64 principals is the upper bound security concerns [13, 9]. To enforce the correctness (e.g.
on number of new principals added, it is intuitive that completeness and lack of conflicts) of policy specifications,
there is a much smaller upper bound, which is the topic policy language formalization and analysis have been per-
of future work. The number of principals needed directly formed using different techniques such as formal languages,
affects how many Type I policy statements we need. Thus automata theory, logic programming [9], and theorem prov-
a smaller number of principals yields a smaller state space. ing [5]. However, these reasoning approaches require more
While the current state space of 24765 is quite large, SMV expertise and efforts, and sometimes have less tool support,
is able to check both properties. The translation from RT which are barriers for practitioners to adopt these formal
took about 9.9 s, and the first two properties were verified techniques in developing secure software systems.
using SMV in approximately 400 ms. The third was found To alleviate this problem, researchers have been work-
to be false in about 480 ms with a counterexample where ing towards developing automated tools to examine secu-
the statement HR.manufacturing +- P9 is included and all rity properties using lightweight formal analysis techniques
other non-permanent statements are removed. The value [3, 4, 6, 10, 14], such as model checking. Zhang et. al.
of P9 is a generic principal name and has no effect on [15] developed a model checking approach to examine the
the outcome. This leads to a state where HQ.ops contains access rights of a group of principals. The access control
P9, but HQ.marketing is empty. This brief example was is modeled in the RW language, which is a propositional
performed on a Pentium 4 2.8 GHz with Windows XP logic-based policy language to express reading and writing

access [6]. However, role delegation expressed as Type II [4] D. Gilliam, J. Powell, and M. Bishop. Application of
or Type III RT statements cannot be expressed and checked lightweight formal methods to software security. In Pro-

using their approach. May et. al. [10] formalized the rules ceedings of the 14th IEEE International Workshop on En-

of Health Insurance Portability and Accountability Act into abling Technologies: Infrastructure for Collaborative En-

an extended access control matrix, which can be analyzed terprises (WETICE 2005), 2005.

by model checker SPIN. However delegation in access con- [5] P. Giorgini, F Massacci, J. Mylopoulos, and N. Zannone.
Modeling security requirements through ownership, permis-

trol matnices does not scale well. Fisler et. al. [3] intro- sion and delegation. In Proceedings of the 13th International
duced Margrave as a tool to analyze the impact of changes Conference on Requirements Engineering (RE'05), pages
in XACML policy. Their focus is on role-based access con- 167-176. IEEE Computer Society, 2005.
trol as opposed to TM and thus they do not address delega- [6] D. P. Guelev, M. Ryan, and P. Y. Schobbens. Model check-
tion. ing access control policies. In Proceedings of the 7th Infor-

In the future, we plan to optimize the preprocessing us- mation Security Conference, volume 3225 of Lecture Notes

ing RDG to reduce the state space and reduce the number in Computer Science. Springer-Verlag, 2004.

of statements/principals necessary to verify a property. In [7] D. Jackson and J. Wing. Lightweight formal methods. con-
tribution to an invitation to formal methods. IEEE Corn-

addition, it is desirable to find the tight bound of extra prin- putern 2 6 1996.
cipas i th MRP. Fnaly w intnd o sow tat hisap-puter, 29:16-30, 1996.

cipals in the MRPS. Finally we intend to show that this ap- [8] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
proach is feasible on extended variants of RT, to possibly role-based trust management framework. In Proceedings of
include negated policy statements. the 2002 IEEE Symposium on Security and Privacy, pages

114-130. IEEE Computer Society Press, May 2002.
7. Conclusions [9] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond

proof-of-compliance: Security analysis in trust manage-
ment. Journal of the ACM (JACM), 52(3):474-514, 2005.

Security analysis of trust management policies is an [10] M. J. May, C. A. Gunter, and I. Lee. Privacy APIs: Access
important step towards provably secure software systems. control techniques to analyze and verify legal privacy poli-
Whereas the trust management approach provides the scal- cies. In Proceedings of the 19th IEEE Computer Security
ability and flexibility to handle real world access control Foundations Workshop, 2006.

requirements, the dynamic and indirect nature of delegation [11] K. McMillan. Symbolic Model Checking: An Approach to

does not always provide an intuitive sense as to what the the State Explosion Problem. Kluwer Academic, 1993.

limitations on resources are actually in place. This paper [12] A. Pnueli. The temporal logic of programs. In Proceedings
of the 18th IEEE Symposium on Foundations of Computer

proposes a fully automated approach to performing security Science, volume 526, pages 46-67, 1977.
analysis in trust management. We demonstrate the feasibil- [13] R. S. Sandhu, E. J. Coyne, H. L. Feinstern, and C. E.
ity of translating trust management policies into the input Youman. Role-based access control models. IEEE Corn-
language of a model checker to analyze role containment. puter, 29(2):38-47, 1996.
By translation, we support reuse of existing policy language [14] A. Schaad, V. Lotz, and K. Sohr. A model checking ap-
and analysis tools to take advantage of policy language ex- proach to analysis organizational controls. In Proceedings

pressiveness and analysis tools' optimization. We also show of the I lth ACM Symposium on Access Control Models and

that this approach can also be used in other security policy Technologies (SACMAT06), pages 139-149, 2006.

analysis such as separation of duty, safety, and availability. [15] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating ac-
cess control policies through model checking. In Proceed-
ings of the 8th Information Security Conference, volume

References 3650 of Lecture Notes in Computer Science, pages 446-460.
Springer-Verlag, 2005.

[1] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In SP '96: Proceedings of the 1996 IEEE
Symposium on Security and Privacy, page 164, Washington,
DC, USA, 1996. IEEE Computer Society.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tempo-
ral logic specifications. ACM Transactions on Programming
Language ans Systems (TOPLAS), 8(2):244-263, 1986.

[3] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tshchantz. Verification and change-impact analysis of
access-control policies. In Proceedings of the 27th IEEE
International Conference on Software Engineering (ICSE
'05), pages 196-205, 2005.

